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ABSTRACT

We present AlphaTruss, a 2-stage pipeline designed for truss layout optimization,
which incorporates deep reinforcement learning for better expressibility and larger
solution space. Empirical results show that AlphaTruss can achieve an average of
377.06 kg improvement over traditional optimization methods. Theoretical and
numerical analysis further justifies the effectiveness of AlphaTruss.
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1 Introduction

A truss is a framework composed of several joint bars, whose layout is represented by node locations,
connection topology between nodes and cross-sectional areas of each connection [4]. After properly
adjusting the components of a truss layout, its weight could be reduced without affecting the load
capacity and structural stability. Hence it’s vital for a designer to consider the optimal truss layout
design, which achieves the minimal weight under certain constraints.

The task of the automatic generation of optimal truss layout is made challenging by the enormous
solution space when considering node locations, connection topology and cross-sectional areas
simultaneously. To tackle such a challenge, a lot of research efforts have been made through methods
based on physical expriments [6], numeric optimization [5, 3, 10, 22, 15, 31] and graphics [11, 1,
23, 16, 27]. However, these methods suffer from two limitations. First of all, their optimization
models are usually discrete and heuristic, which limits the expressibility of the model. Secondly,
due to the heavy computational budget for optimization, these algorithms cannot be scaled up to
larger solution space. Currently, most of these methods were built on the assumption of limited
solution space, i.e. generating a truss layout using trangles, polygons or polyhedra, which largely
restricts the solution space of the optimization algorithms. For example, a graphic-based algorithm
cannot generate a truss structure that is not triangulated, so some additional bars may well be added
to the generated truss layout, which is unnecassary to guarantee stability and load capacity.

To improve the expressibility and expand the solution space, we propose a two-stage truss layout
generation pipeline which is closely connected to deep reinforcement learning. During the first
stage, we model optimal truss layout design as a sequence generation problem in discrete action
space. Specifically, the process to design a truss layout is formulated as a sequence of actions, each
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action corresponds to a design variable including the location of a node and the cross-sectional
area between the connection of two nodes. Automatic generation of a dedicated sequence has been
constantly studied in the literature of natural language processing [8, 24]. And policy gradient
reinforcement learning is testified as an effective tool to optimize a generated sequence over a
discrete reward function [19, 21, 32]. At the second stage, the truss layout generated beforehand is
fine-tuned with a high dimensional continuous action space, through deep reinforcement learning
algorithms specifically designed for continuous states and action spaces. In both stages, a reward
function is calculated as the quality of the generated truss layout, measured by its total weight,
displacement, stress etc. We name the pipeline as AlphaTruss. To the best of our knowledge, this
is the first work that incorporates deep reinforcement learning into truss layout optimization.

In summary, the contribution of this work is 3-fold:

• Infrastructures that support the research of truss layout optimization with deep reinforcement
learning is implemented.

• The issue of solution space scalability is largely addressed with deep neural networks and
long-time training.

• New state-of-the-art performance on truss layout design is achieved.

2 Related Work

Truss Layout Optimization Ever since [17] derived the optimality criteria for minimal weight truss
layout, several research contributions have been made to automating the optimal truss layout design
process. There is also a line of work that try to design truss layout through numeric optimization,
some of them are based on specific mathematical models such as ground structure [5] and material
distribution [3], while others borrow the ideas from more general optimization algorithms and
effectively apply them to the problem of truss layout optimization. Those methods includes
envolutionary algorithms [10, 31], particle swarm optimization [15, 12] and genetic algorithm
[20]. Another dedicated line of works draw their inspirations from graphics, and define graphic
shapes as atomic elements to generate truss layout, which includes shape grammar [11], grammar
statics [1, 23] and triangulation [16, 27]. Besides, there are some attempts made to utilize physical
experiments [6] for structure design, coupled with numerical simulations. However, such methods
with physical simulation have been suffering from poor accuracy and low efficiency.

Deep Reinforcement Learning This work involves two applications of deep reinforcement learning.
The first is reinforcement learning for sequence generation [19, 21, 32]. Among various methods,
REINFORCE [30] is the most frequently adopted one. [21] proposed a variant of REINFORCE
named Self-Critical Sequence Training (SCST), which have become the de-facto method to optimize
sequence generation models over a discrete reward function. The second is deep reinforcement
learning with continuous state and action spaces [25, 9, 18]. This line of work often aims at
improving sample efficiency and training stability of deep reinforcement learning framework.

3 Background

A truss layout is characterized by a set of nodes and bars, denoted as (V , E). Each node u ∈ V is a
point in Euclidean space, and each bar e ∈ E is defined as a tuple e = (u, v, α), where u, v ∈ V ,
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and α ∈ R is the cross-sectional area of the bar. The objective of truss layout optimization is to
minimize the total weight of the generated layout, which can be formally expressed as follows.

min
(V,E)∈Ω

ρ
∑

(u,v,α)∈E

α‖u− v‖2 (1)

where Ω is the set of legal truss layouts under several design constraints. Among all the design
constraints, the most basic one is the design envelope constraint, which means the end points and
the cross-sectional area of each bar must lie in a bounded interval. Also, a legal truss layout must
meet a line of geometric stability constraints, whose details are defered to Section B.

4 AlphaTruss

4.1 Stage 1

At stage 1, the node location and cross-sectional area bounds are all uniformly discretized. In such
a grid world setting, a truss layout can be expressed as a sequence S = a1a2 . . . am (We later denote
it by productions

∏m
i=1 ai for simplicity). Each element ai ∈ S is from a finite set. When given the

expected number of nodesN , the length of sequence S will be fixed to |S| = N+N∗(N−1)/2. The
first N elements represents the location of each node, and the last N ∗ (N − 1)/2 elements represent
the existance and cross-sectional area (if existed) of each bar. Hence truss layout optimization is
reduced to an optimal sequence generation problem.

In AlphaTruss, greedy search is used for sequence generation. When a utility function for each
prefix of the sequence µp(·) is defined, each element in the sequence will be iteratively chosen as:

ai = arg max
a

µp

(
i−1∏
j=1

aj · a

)
(2)

Suppose the utility is defined for a sequence of length m as µs(S), we define the utility for each
prefix of the sequence as:

µp

(
n∏
i=1

ai

)
= max
{aj}mj=n+1

µs

(
n∏
i=1

ai ·
m∏

j=n+1

aj

)
(3)

Theorem 1. The greedy search process defined with (2) and (3) produces the optimal sequence

We defer the proof of Theorem 1 to Section A. To evaluate the utility of a prefix, a reinforcement
learning agent is trained to generate the optimal sequence with the prefix as the initial state. The
utility of the optimal sequence generated during the training process will then be used to approximate
the utility of that prefix. We use SCST [21] to train the agent, by which the gradient of the current
policy is estimated as follows:

∇θL(θ) = −(µs(S)− µs(Ŝ))∇θ log pθ(S) (4)

where Ŝ is the previously generated optimal sequence, S is the sequence generated by the current
policy with greedy decoding. We parameterize the policy pθ with a Transformer model [29], which
could be used to generate the sequence in an auto-regressive manner.
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One could also interprete the greedy search process from the perspective of exploration and
exploitation: each time an element is generated, the results from the last trained agent is exploited to
restrict the exploration space. Such a progressive restriction on exploration by exploiting previous
results is heuristically designed for sequence generation.

4.2 Stage 2

At stage 2, the truss layout generated in grid world during the previous stage is refined in a high
dimensional continuous space, by incrementally moving the node positions and modify the cross-
sectional area of each bar. We model the refinement process as a deterministic infinite-horizon
Markov decision process (MDP), denoted by the tuple (S,A, t, r). Here the state space S and the
action space A are continuous with the same dimensionality. Each state s ∈ S is a concatenation
of all the point locations and bar cross-sectional areas in the truss, and each action a ∈ A is
the concatenation of increments for each point location and cross-sectional area. The trainsition
function is defined as t(s, a) = s+ a, and the reward function r(s) is defined to measure the quality
of the resulting truss layout.

We optimize the refinement policy using Soft Actor-Critic (SAC) [9], which is a maximum entropy
deep reinforcement learning algorithm. Extensive experiments have shown that SAC can effectively
address policy learning in continuous action spaces. Since the state of the truss layout is time
independent, multiple rounds of refinement can be conducted by setting the initial state as the
optimal layout obtained from the last refinement. Multi-round refinement also progressively restricts
the exploration space, in order to speed up the convergence of the refinement process.

5 Experiment

5.1 Settings

Our experiments are conducted on unconditional truss layout optimization tasks and conditional
truss layout optimization tasks in a two-dimensional plane.

Unconditional Truss Layout Optimization We first test AlphaTruss on size, shape and topology
optimization. In these test cases, only special nodes with supports or loads are initially provided.
As shown in Table B.1, we consider two load cases. In Case 1, 4 initial nodes are provided, 2 new
nodes are required to generate. In Case 2, 6 initial nodes are provided, 1 new node is required to
generate. The algorithm is also responsible to decide the connection topology between the nodes
and the cross-sectional areas of each bar. We use previously published results with the same settings,
Fenton, et al. [16] which doesn’t consider buckling constraints and Petrović, et al. [20] which does,
as our baselines.

Conditional Truss Layout Optimization We also test AlphaTruss on size or both size and topology
optimization. In these test cases, node positions and connection topology between nodes are all
provided. The algorithm is responsible to decide on variables about each bar. For size optimization,
the algorithm only need to select the cross-sectional area for each bar. For both size and topology
optimization, the algorithm can choose the cross-sectional area for a bar, or directly delete the bar.
We choose the ten-bar benchmark that is frequently used by previous works [12, 14, 28, 2] as the
input layout, and test the proposed pipeline with both load cases shown in Table B.1. We use the
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Methods Case 1 (kg) Case 2 (kg) Case 1∗ (kg)

Fenton, et al. [16] 2217.54 2097.54 -
Petrović, et al. [20] - - 3172.77
AlphaTruss 2131.88 1369.69 2855.10

Table 1: Results for unconditional truss layout optimization. ∗ means the test case takes Euler
buckling constraints on stressed bars into account.

Methods Case 1 (kg) Case 2 (kg) Case 1∗ (kg) Case 2∗ (kg)

Lee, et al. [14] 2294.21 2117.73 - -
Kaveh, et al. [12] 2293.62 2120.90 - -
Assimi, et al. [2] - - 2221.92 2019.66
Tejani, et al. [28] - - 2233.50 2228.43
AlphaTruss 2295.83 2122.77 2222.50 2011.50

Table 2: Results for conditional truss layout optimization. ∗ means the test case also includes
topology optimization.

results reported in previous literatures as our baselines. In all the cases of conditional truss layout
optimization, buckling constraints is not considered.

We defer the detailed settings of the environment and training process in Section B.

5.2 Results

Table 1 shows the results for unconditional truss optimization. In Case 1, AlphaTruss outperforms
the corresponding baselines with or without buckling constraints by a margin of 317.67 kg and
85.66 kg respectively. In Case 2 without buckling constraint, AlphaTruss even outperforms the
baseline method by a margin of 727.85 kg. These results consistently show the effectiveness of
AlphaTruss in truss layout optimization problem that has large solution spaces.

Table 2 shows the results for conditional truss optimization. For both cases with or without topology
optimization, the results are mixed. This might indicate the reduction on solution space will largely
restrict the capability of AlphaTruss. Be that as it may, AlphaTruss still performs on par with the
best baseline method, within a margin of +5.04 kg.

The detailed information about each generated truss layout is defered to Section C.

5.3 Analysis

Effectiveness of greedy search with SCST Given the combination of greedy search and SCST in
stage 1 of AlphaTruss, one natural question is how does each component contribute to the generated
layout. To understand it better, we conduct ablation studies on components in stage 1. The results for
different variants of stage 1 are shown in Table 3. Compared with SCST without greedy restriction
on the sequence prefix, our proposed method successfully boosts up the training efficiency, with
over 600 kg performance gain under the same amount of training steps. Compared with greedy
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Methods Case 1 (kg) Case 2 (kg) Case 1∗ (kg)

SCST 2930.47 3732.72 4387.55
GS + random 2638.70 2399.39 3674.22
GS + SCST 2283.25 1769.02 3263.87

Table 3: Test results for different variants of stage 1. GS + SCST: greedy search with SCST
as proposed; GS + random: greedy search with random sampling; SCST: using SCST without
progressive restriction on the sequence prefix. ∗ means the test case includes buckling constraints.
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Figure 1: Weights of the truss layout after each round of refinement. The dashline represents the
improvement from the output in stage 1, and active line represents improvements from the previous
round of refinment. ∗ means the test case also includes Euler buckling constraints.

search using random sampling to evaluate prefix utility, SCST can highly improve data efficiency,
resulting in more accurate evaluation results with the same amount of sampled trajectories.

Multi-round refinement Stage 2, consisting of multiple rounds of refinements, is the key of
AlphaTruss to expanding the solution space. Figure 1 shows the effectiveness of multi-round
refinement. The first round of refinement, which expands the solution space from the grid world to
a continuous space, brings about up to hundreds of kilograms of improvements. The following up
refinements, though with smaller magnitude, can still improve the weight by up to 20 kilograms.

6 Conclusion

We present AlphaTruss, a 2-stage pipeline for truss layout optimization. Deep reinforcement
learning is successfully incorporated into this pipeline to improve the expressibility and expand
the solution space. AlphaTruss achieves new state-of-the-art results in truss layout optimization
that considers size, shape and topology simultaneously. However, one limitation of AlphaTruss
is that its two stages are loosely connected, which makes either stage replaceable with respect to
another. Also, lots of topics are left unexplored, including the end-to-end training of truss layout
optimization model and the transferability of a learned deep model in truss layout design. We defer
the solution to these issues to future work.
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A Proof of Theorem 1

Theorem 1. For any finite set A, Sm(A) is the set of sequences with fixed length m consisting
of elements from A, Pmn (A) is the set of prefixes with length n of sequences in Sm(A). For each
P ∈ Pmn (A), denote SPm(A) as the set of sequences in Sm(A) with P as its prefix. For any utility
function µs defined over Sm(A) and P ∈ Pmn (A), if we define:

µp(P ) = max
S∈SPm(A)

µs(S)

then we have:

arg max
S∈Sm(A)

µs(S) =
m∏
i=1

{
ai | ai = arg max

a∈A
µp

(
i−1∏
j=1

aj · a

)}
(5)

Proof. Let S∗ be the optimal sequence defined in the left hand side of Equation 5, Ŝ be the sequence
defined in the right hand side of Equation 5 and Pn be the prefix of Ŝ of length n. Suppose
µs(S

∗) > µs(Ŝ), then let Pi be the shortest prefix of Ŝ such that µp(Pi) < µs(S
∗), we have i > 1

and µp(Pi−1) = µs(S
∗) by definition. Then from Equation 5:

µp(Pi) = max
a∈A

µp(Pi−1 · a)

Note that for any S ′ ∈ SPi−1
m (A), suppose the i-th element for S ′ is b, we have:

µs(S
′) ≤ max

S∈S
Pi−1·b
m (A)

µs(S) = µp(Pi−1 · b) ≤ max
a∈A

µp(Pi−1 · a) = µp(Pi)

Hence:

µs(S
∗) = µp(Pi−1) = max

S∈S
Pi−1
m (A)

µs(S) ≤ µp(Pi)

which is a contradiction.

B Experiment settings for environment and training

Enviroment Settings
5 stability constraints are taken into account:

1. Maxwell criterion [7]

2. Finite-definiteness of stiffness matrix

3. Displacement allowance for each node

4. Stress allowance for each bar

5. Euler buckling constraint [20] (only for part of test cases)

All physical values involved in those constraints were calculated by OpenSeesPy1, with Young’s
modulus of the materials of each bar set to 68950 MPa. We implement the environment for both

1https://openseespydoc.readthedocs.io/en/latest/
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Node id Locations (mm) Restricted Degrees Load Forces (N)
Case 1 Case 2

1 (0, 0) 2 (0, 0) (0, 0)
2 (0, 9144) 2 (0, 0) (0, 0)
3 (9144, 0) 0 (0,−444800) (0,−667200)
4 (18288, 0) 0 (0,−444800) (0,−667200)
5 (9144, 9144) 0 (0, 0) (0, 222400)
6 (18288, 9144) 0 (0, 0) (0, 222400)

Table B.1: Initial nodes for both test cases. For Case 1, in unconditional truss layout generation,
only the first 4 nodes are used as initial input; in conditional truss layout optimization with topology
optimization, Node 5 and Node 6 can be eliminated when all adjacent bars are eliminated.

stages, with the utility for the generated sequence at the first stage and the reward of the refined
truss at the second stage both have a form of:

r(V , E) =


λ

(ρ
∑

(u,v,α)∈E α‖u− v‖2)2
, all constraints are met

c, otherwise
(6)

where c is from a set of constants determined by the violated constraints. When the truss layout
violate the Maxwell criterion or finite-definiteness of the stiffness matrix, c = −1, otherwise, c = 0.
And λ is the scaling factor, set as 1.69 × 107. To meet the settings in previous literatures, The
density ρ is set to 2767.99 kg/m3, the maximum displacement for each node is set to 50.8 mm, the
maximum compression and tension stress for each bar are both set to 172.3 MPa, the x-coordinate
for each node is set to range from 0 mm to 18288 mm, the y-coordinate for each node is set to range
from 0 mm to 9144 mm, the minimum cross-sectional area for each bar is set to 0.6452 cm2 and the
maximum cross-sectional area is set to 200 cm2 when Euler buckling constraint is not considered or
400 cm2 otherwise.

Training Settings At stage 1, for unconditional truss layout optimization, node location is selected
from a 7× 5 grid in load Case 1, and from a 17× 9 grid in load Case 2; for both conditional and
unconditional optimzation, value for cross-sectional area of each bar is uniformly discretized to 10
pieces. To evaluate a prefix, we train the agent for 100 steps. In each training step, we sample 32
generated sequences using the current policy network with dropout noise [26] at rate 0.1, and use
those sequences as a mini-batch. We use Adam optimizer [13] with learning rate 5e-5, β1 = 0.9,
β2 = 0.999, ε = 10−8. At stage 2, we use SAC algorithm implemented in RLkit2. The policy in
stage 2 is optimized for 3000 epochs. In each epoch, 10000 episodes were collected and for each
1000 episodes, the policy network will be trained for 10 steps with batch size 256. A refinement
trajectory is considered to be one episode whenever the refinement is taken over 10 steps and the
weight for the truss layout is increased. The refinement is conducted for 3 rounds for unconditional
truss optimization and 6 rounds for conditional truss optimization. we report the best results during
the process of refinement.

2https://github.com/rail-berkeley/rlkit
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C Detailed information on generated truss layout

New Nodes
Node id Location (m)

5 (6.571718521267175, 4.264582944989205)
6 (11.121687366932633, 7.135966499805452)

Edges
Adjacent Nodes Cross-sectional Area (cm2)

(4,3) 85.65544317166014
(1,3) 123.86447558800383
(1,5) 143.99899731079743
(3,5) 33.250477512677522
(2,5) 32.598720490932464
(4,6) 140.00660687685011
(2,6) 200
(5,6) 102.09372222423551

Table C.1: Optimized truss layout for case 1, with weight 2131.88 kg

New Nodes
Node id Location (m)

7 (14.262575678783659, 4.023368473774196)
Edges

Adjacent Nodes Cross-sectional Area (cm2)
(4,3) 50.10266897678375
(1,3) 162.9724128862221
(4,2) 0.7942145146846764
(3,2) 63.0717089096705
(2,5) 2.773422417831422
(5,6) 13.855296669403711
(4,7) 78.50108960072204
(2,7) 68.22245860497157
(5,7) 24.797533975044893
(6,7) 54.63785142898561

Table C.2: Optimized truss layout for case 2, with weight 1369.69 kg

11



SUMMER THESIS - AUGUST 29, 2021

New Nodes
Node id Location (m)

5 (3.781325548857451, 0.0)
6 (13.215890158912533, 4.574480132272839)

Edges
Adjacent Nodes Cross-sectional Area (cm2)

(4,3) 276.5164307248831
(3,2) 126.5094101947785
(1,5) 236.7708105175734
(3,5) 291.7419581330299
(2,5) 0.6452
(4,6) 128.79807654981616
(3,6) 139.56946235537535
(2,6) 139.41888256146914

Table C.3: Optimized truss layout for case 1 including buckling constraints, with weight 2855.10 kg

Edges
Adjacent Nodes Cross-sectional Area (cm2)

(1,3) 152.53565339754424
(2,3) 47.89338822960852
(3,4) 98.35076424047151
(1,5) 135.13457657613756
(2,5) 195.6676412458896
(3,5) 0.6452
(4,5) 138.64068322186476
(3,6) 0.6452
(4,6) 3.4014700413227087
(5,6) 0.6452

Table C.4: Optimized truss layout for case 1 with only size optimization, weight 2295.83 kg

Edges
Adjacent Nodes Cross-sectional Area (cm2)

(1,3) 166.1644706912756
(2,3) 79.39892368060747
(3,4) 89.44342777690888
(1,5) 82.2628322794437
(2,5) 151.9332522342046
(3,5) 0.6452
(4,5) 132.57439003954727
(3,6) 0.6452
(4,6) 12.833880894080794
(5,6) 0.6452

Table C.5: Optimized truss layout for case 2 with only size optimization, weight 2122.77 kg
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Edges
Adjacent Nodes Cross-sectional Area (cm2)

(1,3) 148.16986556063226
(2,3) 38.972172076763042
(3,4) 96.45939446825713
(1,5) 138.3991808131854
(2,5) 190.97812940326274
(4,5) 135.51302842055959

Table C.6: Optimized truss layout for case 1 with size optimization and topology optimization,
weight 2222.50 kg

Edges
Adjacent Nodes Cross-sectional Area (cm2)

(1,3) 148.44463820149117
(2,3) 61.3561316210587
(3,4) 89.43289802335117
(1,5) 89.40670726735303
(2,5) 156.13548522413815
(4,5) 122.724817526971
(3,6) 0.6452
(4,6) 13.03386601821847

Table C.7: Optimized truss layout for case 2 with size optimization and topology optimization,
weight 2011.50 kg
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