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Abstract—The taxi-passenger matching process has been stud-
ied for a long time, but still remains challenging. In this work,
we try to investigate the optimal decision of taxis and the optimal
pricing strategy of the firm who owns the system. To be specific,
we propose a method to compute the Laplacian transform of the
conditional response time of taxi driver when the matching time
and inter-arrival time of customers are generally distributed,
which will help to calculate the utility function of taxi drivers.
We also characterize the value function of pricing strategy when
the system is Markovian, which implies an optimal pricing
strategy for taxi driver when passenger’s arrival rate is high.
Numerical simulation shows that our proposed method is correct
and effective.

Index Terms—taxi-passenger matching, double-ended queue-
ing system, optimal decision, optimal pricing

I. INTRODUCTION

Taxi-passenger matching process has received the attention
from researchers long time ago. Ever since the 1950s, nu-
merous work has been devoted to study the Taxi-passenger
matching process ( [1], [2], [3], [4], [5], [6], [7]), by modelling
such process as a double-ended queueing system.

As is shown in Fig. 1, in a double-ended queueing system,
passengers and taxis will come into the system from two sides
and match with each other. A passenger and a taxi will leave
the system after being matched with each other. The matching
time, inter-arrival time of passengers and inter-arrival time
of taxis all follow a certain distribution. The matching will
take place once both sides of the system is non-empty. The
double-ended queueing system can be generally applied to any
process with a supply side and a demand side, not only the
taxi-passenger matching process.

With the development of shared transportation, taxi-
passenger matching process has increasingly affected daily
economics. However, few works have devoted to the economic
side of taxi-passenger matching process, e.g. at which time to
join the queueing system will maximize one taxi driver’s profit,
how much should the firm who owns the system charge each
taxi driver to maximize the firm’s income. In this work, we try
to model the taxi driver’s decision process and investigate the
pricing strategy of the system owner to maximize the profit of
both taxi drivers and owner.

Our main contributions can be concluded as follows:
• We proposed a method for computing the Laplacian trans-

form of the conditional response time in a double-ended
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Fig. 1. A illustration of taxi-passenger matching process with double-ended
queueing system. Passengers and taxis will come into the system from two
sides and match with each other. A passenger and a taxi will leave the system
after being matched with each other. The matching time, inter-arrival time of
passengers and inter-arrival time of taxis all follow a certain distribution. The
matching will take place once both sides of the system is non-empty.

queueing system. The inter-arrival time of passengers and
matching time in this system can be generally distributed.

• We investigated the value function of the pricing policy
when the system is Markovian, which implies an optimal
pricing strategy for the firm who owns the system when
the passenger side is non-empty and the passenger’s
arrival rate is high.

• We implemented a simulation system for double-ended
queueing system and tested the correctness and effective-
ness of the proposed method.

II. RELATED WORK

Numerous studies have been conducted on double-ended
queueing system, since the system was firstly proposed by
Kendall in [1] to model the matching process of taxis and
passengers. The system consists of two sides: a stream of
taxis arriving in a Poisson process with rate λ1, and a stream
of passengers arriving in a Poisson process with rate λ2.
Matching takes on when both sides of the queue are non-
empty, and the matching process takes no time, which means
there is a queue in a system only if one side of the system is
empty. When the capacity for taxis and passengers are both
infinity, it is provable that the double-ended queue doesn’t have
steady-state probability under constant arrival rates as shown



in [1]. When the capacity for taxis and passengers are limited
and the matching time is zero, Mendoza et al. [5] derived the
steady-state probability of the system:

πm =

{
ρm+N 1−ρ

1−ρM+N+1 ρ 6= 1
1

M+N+1 ρ = 1
(1)

where πm is the probability when m taxis are waiting in the
queue (when m < 0, then −m passengers are waiting in the
queue), M is the capacity upper bound on taxis, N is the
capacity upper bound on passengers and ρ = λ1

λ2
. This result

is obtained by solving the balance equation of the induced
Markov chain.

Kasgyap [2] investigated a double-ended queueing system
with limited waiting space and zero matching time, also
he assumed the arrival process of taxis are general. Using
the results in [4], Kasgyap derived the Laplacian transform
of time-dependent generating function f(x, α, t), which is
defined as:

f(x, α, t) =

M∑
n=−N

αnpn(x, t) (2)

where pn(x, t)dx denotes the probability that at time t, n taxis
are waiting in the queue, and the time elapsed since the last
arrival of a taxi lies in (x, x + dx). Bhat et al. [3] further
considered the control problem on such a system by calling
extra taxis when the number of passengers waiting in queue
is larger than a threshold. Using renewal-reward theorem, he
obtained the transient and steady-state probability of such
process and the optimal control variable.

However, the assumption that the matching time is zero
tends to be inconsistent with the real-world situation. Several
studies have been conducted to tackle this problem. Kim et
al. [6] designed a simulation method to investigate double-
ended queueing system with non-zero matching time so that
the model can be closer to actual situaltion. Shi et al. [7] used
a matrix-analytic method to derive the steady-state probability
when the matching time is non-zero. But their way in [7]
to compute the joint steady-state probability involves solving
a matrix-quadratic equation, which is complex and time-
consuming. And they also assumed the distribution of the
matching time and the distribution of inter-arrival time of
taxis and passengers to be exponential, which may fail to
model some situation in the real world. For example, Gong
et al. [8] showed that the time of passengers walking from an
airport terminal to the taxi pool of an airport satisfies inverse
Gaussian distribution, under this circumstance, the inter-arrival
time of passengers cannot be simply modeled as exponentially
distributed.

In terms of decision modeling and pricing strategy, Chen
et al. [9] proposed a state-dependent pricing strategy for a
M/M/1 queueing system, and proved the optimality of such
pricing strategy. Ying et al. [10] studied the the optimal
control for double-ended queueing system, which involves the
decision model of taxi drivers and the optimal tax policy of the
government. However, due to the complexity of the system,
they only focused on numerical analysis and also assumed the

matching time to be zero. To the best of our knowledge, no
previous work have investigated the topic of decision modeling
and pricing strategy in a double-ended queueing system with
non-zero matching time.

III. DECISION MODELING OF TAXI DRIVERS

In this section, we assume the taxi drivers could decide
whether to join the queue when they enter the double-ended
queueing system, and try to model the decision of taxi drivers.
We assume the matching time to be i.i.d random variables
following general distribution DS with its p.d.f being fS(x)
and c.d.f being FS(x), we also assume the inter-arrival time
of passengers to be i.i.d random variables following general
distribution DA with its p.d.f being fA(x) and c.d.f being
FA(x). The matching process is assumed to have a FCFS
scheduling.

A. Conditional Response Time Analysis

When a taxi arrives and finds that M − 1 other taxi drivers
and N passengers are waiting in the queue, we try to derive
the response time of that taxi under such condition. Here we
let TM,N denote the response time of the taxi driver when
there are M − 1 other taxis ahead of him and N passengers
are currently waiting in queue. Consider the situation when the
passenger side of the system is empty, we have the following
proposition:

Proposition 1. let Si be i.i.d random variables following DS

for i = 1, 2, . . . ,M , Ai be i.i.d random variables following
DA for i = 1, 2, . . . ,M − 1 and Ae be the excess time of the
arrival of next passenger. We have:

TM,0 = max
j∈[0,M−1]

(

j∑
i=1

Ai +

M−1∑
i=j+1

Si) + SM +Ae (3)

Proof. We prove this by mathematical induction. When M =
1, this taxi needs to wait for the first passenger to arrive and
finish the matching procedure. So clearly T1,0 = S1+Ae. Now
suppose the proposition holds for all 1 ≤ j < M , Then the
taxi will start its matching process only when the following
two events have all happened
• The taxi directly in front of it has left the system.
• M passengers have entered the system

Therefore we have:

TM,0 = max(TM−1,0,

M−1∑
i=1

Ai +Ae) + SM

= max( max
j∈[0,M−2]

(

j∑
i=1

Ai +

M−2∑
i=j+1

Si) + SM−1,

M−1∑
i=1

Ai)

+ SM +Ae

= max
j∈[0,M−1]

(

j∑
i=1

Ai +

M−1∑
i=j+1

Si) + SM +Ae

So the proposition holds for every integer M ≥ 1.



The result of Proposition 1 can be generalized to the
situation where the passenger side of the system is non-empty,
but then we need to consider the excess time of a matching
process, denoted by Se.

Proposition 2. let Si be i.i.d random variables following
DS for i = 1, 2, . . . ,M − 1, Se be the excess time of
the completion of a matching, Ai be i.i.d random variables
following DA for i = 1, 2, . . . ,M − N − 1 and Ae be the
excess time of the arrival of next passenger. We have:

T1,N = S1,∀N > 0 (4)

TM,N = Se +

M−1∑
i=1

Si,∀N > 0, 1 < M ≤ N (5)

TM,N = max[Se +

M−2∑
i=1

Si,

Ae + max
j∈[0,M−N−1]

(

j∑
i=1

Ai +

M−N−1∑
i=j+1

SN+i−1)]

+ SM−1,∀N > 0,M > N

(6)

Proof. When M ≤ N , the newly arrived taxi just need to
wait the taxis ahead of him to match their own passengers,
then take its passenger to leave the system, and when M > 1,
the time for the taxi in the front of the queue to finish matching
is Se. So (8) and (5) clearly holds. When M > N , we can
also use mathematical induction to get the results. Notice that
for the newly arrived taxi to get served, two events must all
have happened:
• The taxi directly in front of it has left the system.
• M −N passengers have entered the system

So we have:

TM,N = max(TM−1,N ,

M−N−1∑
i=1

Ai +Ae) + SM−1

= max(max[Se +

M−3∑
i=1

Si,

Ae + max
j∈[0,M−N−2]

(

j∑
i=1

Ai +

M−N−2∑
i=j+1

SN+i−1)]

+ SM−2,

M−N−1∑
i=1

Ai +Ae) + SM−1

= max[Se +

M−2∑
i=1

Si,

Ae + max
j∈[0,M−N−1]

(

j∑
i=1

Ai +

M−N−1∑
i=j+1

SN+i−1)]

+ SM−1

So (6) holds for all M > N .

With proposition 1 and proposition 2, we can calculate the
conditional mean response time.

Corollary 1.

E[TM,0] =

M−1∑
i=0

π
(M)
i · [i ·E[A]+(M−i) ·E[S]]+

E[A2]

2E[A]
(7)

E[TM,N

∣∣∣1 < M ≤ N,N > 0] = (M−1)·E[S]+
E[S2]

2E[S]
(8)

E[TM,N

∣∣∣M > N,N > 0]

= π
(M,N)
0,0 · [(M − 1) ·E[S] +

E[S2]

2E[S]
]

+

M−N−1∑
i=0

π
(M,N)
1,i · [i ·E[A] + (M −N − i) ·E[S] +

E[A2]

2E[A]
]

(9)

where:

π
(M)
i = Pr[ argmax

j∈[0,M−1]
(

j∑
k=1

Ak +

M−1∑
k=j+1

Sk) = i]

π
(M,N)
0,0 =Pr[Se +

M−2∑
i=1

Si >

Ae + max
j∈[0,M−N−1]

(

j∑
i=1

Ai +

M−N−1∑
i=j+1

SN+i−1)]

π
(M,N)
1,i =Pr[Se +

M−2∑
k=1

Sk ≤

Ae + max
j∈[0,M−N−1]

(

j∑
k=1

Ak +

M−N−1∑
k=j+1

SN+k−1),

argmax
j∈[0,M−N−1]

(

j∑
k=1

Ak +

M−N−1∑
k=j+1

SN+k−1) = i]

(7), (8) and (9) can be derived from (3), (5) and (6) using
the law of total expectation. And we have used the results
derived in [11]:

E[Ae] =
E[A2]

2E[A]

E[Se] =
E[S2]

2E[S]

Now we show that π(M)
i (i = 0, 1, . . . ,M − 1), π(M,N)

0,0

and π
(M,N)
1,i (i = 0, 1, . . . ,M − N − 1) can be numerically

computed when given FS(x), fS(x), FA(x) and fA(x).

Proposition 3. Given FS(x), fS(x), FA(x) and fA(x), π(M)
i ,

π
(M,N)
0,0 and π(M,N)

1,i are numerically computable.



Proof. From the definition of π(M)
i we can see that:

π
(M)
i = Pr[ argmax

j∈[0,M−1]
(

j∑
k=1

Ak +

M−1∑
k=j+1

Sk) = i]

= Pr[
M−1⋂
j=0

{
j∑

k=1

Ak +

M−1∑
k=j+1

Sk ≤
i∑

k=1

Ak +

M−1∑
k=i+1

Sk}]

= Pr[
i−1⋂
j=0

{
i∑

k=j+1

Ak ≥
i∑

k=j+1

Sk},

M−1⋂
j=i+1

{
j∑

k=i+1

Ak ≤
j∑

k=i+1

Sk}]

= Pr[
i−1⋂
j=0

{
i∑

k=j+1

Ak ≥
i∑

k=j+1

Sk}]

× Pr[
M−1⋂
j=i+1

{
j∑

k=i+1

Ak ≤
j∑

k=i+1

Sk}]

Let Xk = Ak −Sk, then X1, X2, . . . , XM−1 are i.i.d random
variables, the p.d.f of Xk, fX(x) can be calculated as:

fX(x) =

∫ +∞

−∞
fA(x− t)fS(−t)dt

And the tail distribution of Xk is:

FX(x) =

∫ +∞

x

fX(t)dt

Then we have:

Pr[
i−1⋂
j=0

{
i∑

k=j+1

Ak ≥
i∑

k=j+1

Sk}]

= Pr[
i⋂

j=1

{
j∑

k=1

Xk ≥ 0}]

=
i∏

j=1

Pr[
j∑

k=1

Xk ≥ 0
∣∣∣ ⋂
l<j

{
l∑

k=1

Xk ≥ 0}]

We recursively calculate the conditional probability as follows:

Pr[
j∑

k=1

Xk ≥ x
∣∣∣ ⋂
l<j

{
l∑

k=1

Xk ≥ 0}]

=

∫ +∞

0

FX(x− t)Pr[
j−1∑
k=1

Xk ∈ (t, t+ dt)
∣∣∣ ⋂
l<j

{
l∑

k=1

Xk ≥ 0}]

Similarly, we can calculate:

Pr[
M−1⋂
j=i+1

{
j∑

k=i+1

Ak ≤
j∑

k=i+1

Sk}]

So π(M)
i is numerically computable.

For p0,0, we can derive that:

π
(M,N)
0,0 = Pr[

⋂
j∈[0,M−N−1]

{
j∑

k=1

Xk < Se −Ae +

N−1∑
k=1

Sk}]

=

∫ +∞

−∞
Pr[

M−N−1⋂
j=0

{
j∑

k=1

Xk < t}]

× Pr[Se −Ae +

N−1∑
k=1

Sk ∈ (t, t+ dt)]

The distribution of Ae and Se can be obtained using results
in [11], and the distribution of

∑N−1
k=1 Sk can be obtained

by recursively calculating the convolution. So π(M,N)
0,0 is also

numerically computable.
For π(M,N)

1,i , we can derive that:

π
(M,N)
1,i = Pr[ argmax

j∈[0,M−N−1]
(

j∑
k=1

Xk) = i,

i∑
k=1

Xk ≥ Se −Ae +

N−1∑
k=1

Sk]

=

∫ +∞

−∞
Pr[ argmax

j∈[0,M−N−1]
(

j∑
k=1

Xk) = i,

i∑
k=1

Xk ≥ t]

× Pr[Se −Ae +

N−1∑
k=1

Sk ∈ (t, t+ dt)]

Then π
(M,N)
1,i can be calculated the same way as π

(M)
i ,

except for an extra condition. So π(M,N)
1,i is also numerically

computable.

B. Optimal Decision Of Taxi Drivers

Suppose the taxi driver could receive R reward when
immediately finish matching, and there is an outside non-
stochastic reward v when the taxi driver choose not to join
the queue. The firm who owns the double-ended queueing
system would choose to charge a price p for the taxi choosing
to join the queue. We let VM,N denote the estimated reward
of one taxi driver who arrives in the system with M − 1
other taxis ahead and N passengers waiting in the queue. Let
sM,N denote the decision of the taxi driver to join the queue
(sM,N = 1) or directly leave the system (sM,N = 0). Here
we use the same estimation function as in [9]:

VM,N =

{
E
[
e−γτR− p− c

∫ τ
0
e−γtdt

]
, sM,N = 1

v , sM,N = 0
(10)

where c ≥ 0 is the unit cost of delay and 0 ≤ γ ≤ 1 is the
discount rate, τ = TM,N is the response time. The parameter
c and γ allows a general and realistic modeling of taxi drivers
preference, when γ = 0, the reward to join the queue is just a
linear function of response time and when c = 0 we obtain a
situation where the response time only acts as a discounting



factor. To maximize the net reward, the taxi driver will join
the queue if and only if:

E
[
e−γτR− p− c

∫ τ

0

e−γtdt
]
≥ v

Proposition 4. Given fS(x) and fA(x), the estimation func-
tion shown in (10) can be numerically computed.

Proof. Using the linearity of expectation, we have:

E
[
e−γτR− p− c

∫ τ

0

e−γtdt
]

= (R+
c

γ
)T̃M,N (γ)− p− c

γ

where T̃M,N (·) is the Laplacian transform of TM,N . Let Ã(·)
denote the Laplacian transform of random variables following
DA, and S̃(·) denote the Laplacian transform of random
variables following DS . We can compute Ã(·) and S̃(·) as
follows:

Ã(x) =

∫ +∞

0

e−xtfA(t)dt

S̃(x) =

∫ +∞

0

e−xtfS(t)dt

When N = 0, from (3) we have:

T̃M,0(γ) =
1− Ã(γ)

γE[A]

M−1∑
i=0

π
(M)
i · Ãi(γ) · S̃M−i(γ)

when N > 0 and M ≤ N , from (5) we have:

T̃M,N (γ) =
1− S̃(γ)

γE[S]
· S̃M−1(γ)

when M > N > 0, from (6) we have:

T̃M,N (γ) = π
(M,N)
0,0 · 1− S̃(γ)

γE[S]
· S̃M−1(γ)

+
1− Ã(γ)

γE[A]

M−N−1∑
i=0

π
(M,N)
1,i · Ãi(γ) · S̃M−N−i(γ)

Here we directly use the results from [11]:

Ãe(γ) =
1− Ã(γ)

γE[A]

S̃e(γ) =
1− S̃(γ)

γE[S]

where Ãe(·) and S̃e(·) are the Laplacian transform of Ae and
Se respectively. So, we can numerically compute the Laplacian
transform of TM,N , which is the key to compute the estimation
function. So (10) can be computed numerically.

With the above proposition, a taxi driver can then make the
optimal decision upon arriving at the system to maximize the
estimation function shown in (10).

IV. PRICING STRATEGY OF THE FIRM

In this section, we assume the firm who owns the double-
ended queueing system can observe the current state of the
whole system, i.e. the number of taxis and passengers waiting
in the queue. And the firm will charge the taxi who decides to
join the queue at time t a price pt. Let M(t) denote the total
number of taxis who actually decide to join the queue by time
t. Inspired by Chen et al. [9], we model the pricing strategy
of the firm as to choose a set of prices p = {pt, t ≤ 0} in
order to maximize the expected discounted revenue:

E
[ ∫ +∞

0

e−γtptdA(t)
]

(11)

The model will get quite complex when the distribution of
some variables in the model is general. To make the whole
decision process Markovian, we assume the inter-arrival time
between two taxis follows exponential distribution with the
rate being λ1, the inter-arrival time between two passengers
follows exponential distribution with the rate being λ2, and
the time for a matching process is a random variable following
exponential distribution with parameter µ. Here we also define
a state of the system as a tuple s = (M,N), indicating that
there are M taxis and N passengers waiting in the system. Let
ŝ(pt) denote the set of states at which the optimal decision for
a arriving taxi driver is to join the queue when the price is pt.
Then the firm’s objective function can be restated as:

E
[ ∫ +∞

0

e−γtλ1ptI{s(t)∈ŝ(pt)}dt
]

(12)

where I{s(t)∈ŝ(pt)} is a indicator which equals to 1 iff the state
at time t belongs to ŝ(pt).

Let V (M,N) denote the optimal expected profit when the
initial state is s = (M,N).Since now the whole process is
Markovian, we have:

V (M,N)

=
1

µ+ λ1 + λ2 + γ
max
p≥0

{
µ[I{M>0,N>0}V (M − 1, N − 1)

+ I{M=0,N>0}V (0, N) + I{M>0,N=0}V (M, 0)

+ I{M=0,N=0}V (0, 0)] + λ1I{(M,N)∈ŝ(p)}[p+ V (M + 1, N)]

+ λ1I{(M,N)6∈ŝ(p)}V (M,N) + λ2V (M,N + 1)
}

Move the terms that are independent of p out of the max(·)
operation, we have:

V (M,N)

=
µ

µ+ λ1 + λ2 + γ
[I{M>0,N>0}V (M − 1, N − 1)

+ I{M=0,N>0}V (0, N) + I{M>0,N=0}V (M, 0)

+ I{M=0,N=0}V (0, 0)] +
λ2

µ+ λ1 + λ2 + γ
V (M,N + 1)

+
λ1

µ+ λ1 + λ2 + γ
max
p≥0

{
I{(M,N)6∈ŝ(p)}V (M,N)

+ I{(M,N)∈ŝ(p)}[p+ V (M + 1, N)]
}

(13)



We define pM,N , which is equal to the maximum amount of
price that a driver can accept when he or she sees N passengers
and M−1 taxis in the system when getting served, as follows:

pM,N = (R+
c

γ
)T̃M,N (γ)− v − c

γ
(14)

For any price p, since state (M,N) will either belong to ŝ(p)
or not. And when (M,N) ∈ ŝ(p), the way to maximize the
expected reward is to maximize the price p, so inequality (13)
can be modified as:

V (M,N)

=
µ

µ+ λ1 + λ2 + γ
[I{M>0,N>0}V (M − 1, N − 1)

+ I{M=0,N>0}V (0, N) + I{M>0,N=0}V (M, 0)

+ I{M=0,N=0}V (0, 0)] +
λ2

µ+ λ1 + λ2 + γ
V (M,N + 1)+

λ1
µ+ λ1 + λ2 + γ

max
{
V (M,N), pM,N + V (M + 1, N)

}
(15)

To get the optimal pricing strategy, we first prove the
following lemmas.

Lemma 1. pM,N is non-increasing in M .

Proof. To prove this, from (14), we only need to prove that
T̃M,N (λ) is non-increasing in M . We let the double-ended
queueing system start from any steady state at time t = 0.
Let n(t) denote the number of taxis which sees M − 1 other
taxis and N passengers waiting in the queue upon arriving and
complete its matching, and T (i)

M,N denote the response time of
ith such taxi, when N = 0, from proposition 1 we have:

T
(i)
M,N = max(T

(i)
M−1,N ,

M−1∑
i=1

Ai +Ae) + SM

≥ T (i)
M−1,N

Then we have:

E[e−γTM,N ] = lim
t→∞

∑n(t)
i=1 e

−λT (i)
M,N

n(t)

≤ lim
t→∞

∑n(t)
i=1 e

−λT (i)
M−1,N

n(t)

= E[e−γTM−1.N ]

which means T̃M,N (λ) is non-increasing in M .

Lemma 2. For any function f(M), let g(M) = max(pM,N +
f(M + 1), f(M)). If pM,N + f(M + 1) − f(M) is non-
increasing in M , then pM,N + g(M + 1) − g(M) is non-
increasing in M .

Proof. The whole proof is similar to the proof in [9]. The
non-increasing assumption implies that, for any M ≥ 0:

pM,N + f(M + 1)− f(M)

≥ pM+1,N + f(M + 2)− f(M + 1)
(16)

We need to prove:

∆ ≡[pM,N + g(M + 1)− g(M)]

− [pM+1,N + g(M + 2)− g(M + 1)]

≥ 0

Now consider the following four cases with fixed M :
1) When pM+2,N + f(M + 3)− f(M + 2) ≥ 0, by (16),

we have:

pk,N + f(k + 1)− f(k) ≥ 0

for k = M,M + 1. Hence:

∆ =[pM+1,N + f(M + 2)− f(M + 1)]

− [pM+2,N + f(M + 3)− f(M + 2)]

≥ 0

2) When pM+2,N+f(M+3)−f(M+2) < 0 ≤ pM+1,N+
f(M + 2)− f(M + 1), similarly, from (16), we have:

∆ = pM+1,N + f(M + 2)− f(M + 1) ≥ 0

3) When pM+1,N + f(M + 2)− f(M + 1) < 0 ≤ pM,N +
f(M + 1)− f(M), we have:

∆ = −[pM+1,N + f(M + 2)− f(M + 1)] > 0

4) When pM,N + f(M + 1)− f(M) < 0, in this case, we
have:

∆ =[pM,N + f(M + 1)− f(M)]

− [pM+1,N + f(M + 2)− f(M + 1)]

≥ 0

Now we consider some of the character of the value function
described in (15).

Proposition 5. When two conditions are satisfied:
1)

pM,N − pM+1,N

pM−1,N−1 − pM,N−1
≥ µ

µ+ λ

2)
pM,N − pM+1,N

pM,N+1 − pM+1,N+1
≥ 1

Then, when M > 0, N ≥ 0, the value function V (M,N)
has the following two characters:
• V (M,N) is non-increasing in M ,
• pM,N + V (M + 1, N) − V (M,N) is non-increasing in
M

Proof. We adopt the value iteration approach as in [12] to
prove this proposition. For simplicity, we assume µ + λ1 +
λ2+γ = 1. When M > 0, N ≥ 0, we approximate V through
the following recursion:

Vm+1(M,N)

= λ2Vm(M,N + 1) + µ[I{N>0}Vm(M − 1, N − 1)

+ I{N=0}Vm(M, 0)]

+ λ1 max
{
Vm(M,N), pM,N + Vm(M + 1, N)

} (17)



We have:
lim
m→∞

Vm(M,N) = V (M,N)

So we prove the following inequalities for all M > 0, N ≥ 0
by induction on m:

∆1,m ≡[pM,N + Vm(M + 1, N)− Vm(M,N)]

− [pM,N + Vm(M + 1, N)− Vm(M,N)] ≥ 0
(18)

∆2,m ≡ Vm(M,N)− Vm(M + 1, N) ≥ 0 (19)

Let V0(M,N) = 0 for all M > 0, N ≥ 0, and p0,N ≥ 0 for
all N ≥ 0, then (18) and (19) clearly hold for m = 0. Next
suppose that inequality (18) and (19) hold for all m ≤ i, we
need to show that they still hold for m = i+ 1.

For (18), we let:

fm(M) = µ[I{N>0}Vm(M − 1, N − 1)

+ I{N=0}Vm(M, 0)]

and

gm(M) = max
{
Vm(M,N), pM,N + Vm(M + 1, N)

}
and

hm(M) = Vm(M,N + 1)

Then (17) can be rewritten as:

Vm+1(M,N) = fm(M) + λ1gm(M) + λ2hm(M)

Therefore, (18) can be written as:

∆1,i+1 = {[(µ+ γ)pM,N + fi(M + 1)− fi(M)]

− [(µ+ γ)pM+1,N + fi(M + 2)− fi(M + 1)]}
+ λ1{[pM,N + gi(M + 1)− gi(M)]

− [pM+1,N + gi(N + 2)− gi(M + 1)]}
+ λ2{[pM,N + hi(M + 1)− hi(M)]

− [pM+1,N + hi(M + 2)− hi(M + 1)]}

By Lemma 2, the second term in the above inequality is non-
negative, so we now only need to prove:

∆(1) ≡ [(µ+ γ)pM,N + fi(M + 1)− fi(M)]

− [(µ+ γ)pM+1,N + fi(M + 2)− fi(M + 1)]

≥ 0

and:

∆(2) ≡ [pM,N + hi(M + 1)− hi(M)]

− [pM+1,N + hi(M + 2)− hi(M + 1)] ≥ 0

First from the definition of h:

∆(2) = [pM,N + V (M + 1, N + 1)− V (M,N + 1)]

− [pM+1,N + V (M + 2, N + 1)− V (M + 1, N + 1)]

= [pM,N+1 + V (M + 1, N + 1)− V (M,N + 1)]

− [pM+1,N+1 + V (M + 2, N + 1)− V (M + 1, N + 1)]

pM,N − pM+1,N − pM,N+1 + pM+1,N+1

≥ pM,N − pM+1,N − pM,N+1 + pM+1,N+1 ≥ 0

The last inequality comes from condition 2). When M > 0,
N > 0 from the definition of f , we have:

∆(1)

= [(µ+ γ)pM,N + µ(Vi(M,N − 1)− Vi(M − 1, N − 1))]

− [(µ+ γ)pM+1,N + µ(Vi(M + 1, N − 1)− Vi(M,N − 1))]

= µ{[pM−1,N−1 + Vi(M,N − 1)− Vi(M − 1, N − 1)]

− [pM,N−1 + Vi(M + 1, N − 1)− Vi(M,N − 1)]

+ (µ+ γ)(pM,N − pM+1,N )− µ(pM−1,N−1 − pM,N−1)

≥ (µ+ γ)(pM,N − pM+1,N )− µ(pM−1,N−1 − pM,N−1) ≥ 0

The last inequality is from condition 1). When N = 0, the
proof is similar.

For (19), when N > 0, we have:

∆2,i+1 = λ2[Vi(M,N + 1)− Vi(M + 1, N + 1)]

+ µ[Vi(M − 1, N − 1)− Vi(M,N − 1)]

λ1[max
{
Vi(M,N), pM,N + Vm(M + 1, N)

}
−max

{
Vi(M + 1, N), pM+1,N + Vm(M + 2, N)

}
≥ 0

The last inequality comes from induction hypothesis and
Lemma 1. When N = 0, the proof is similar.

Proposition 5 reveals the fact that when the system is non-
empty, then when pM,N ≤ 0, we must have pM,N + V (M +
1, N) ≤ V (M,N), so then, to get the optimal revenue, the
firm should not let this taxi join the queue by setting a very
high price. Since pM,N + V (M + 1, N) − V (M,N) is non-
increasing in M when M > 0, then for any N ≥ 0, we can
find the maximum MN > 0 such that pM,N +V (M+1, N) ≥
V (M,N). When there are N passengers in the system, the
firm should let at most MN taxis to enter the system to get
the maximum revenue.

The two conditions in Proposition 5 basically say that the
number of passengers waiting in queue shouldn’t affect the
response time too much, the response time for a taxi should
mainly composed of matching time, which means the arrival
rate of passengers should relatively high to make the pricing
strategy effective.

V. EXPERIMENT RESULTS

In this work, we implemented a simulation system to sim-
ulate the taxi-passenger matching process in a double-ended
queue. The system was implemented with Python 3.71 and
Numpy2. The decision model and pricing strategy discussed
above were tested in the simulation process. To reduce the
computational complexity, π(M)

i , π(M,N)
0,0 and π

(M,N)
1,i are

estimated through Monte Carlo method.
Specifically, we set the inter-arrival time of taxis as ex-

ponentially distributed with 1
λ1

= 1.1, the service time as
exponentially distributed with 1

µ = 0.7. The reward of a taxi
R is set to be 10, other parameters in (10) is set as c = 0.1,

1https://www.python.org/
2https://numpy.org/



TABLE I
PERFORMANCE COMPARISON

Price
λ2 = 0.5 λ2 = 2

Join ratio Mean profit Join ratio Mean profit

Our model Random Our model Random Our model Random Our model Random

p = 2 0.60 0.51 2.73 2.14 0.99 0.51 6.24 4.57

p = 5 0.58 0.50 2.63 2.01 0.93 0.50 3.54 2.97

p = 7 0.54 0.49 2.11 0.78 0.61 0.50 2.18 1.92

p = 10 0.00 0.50 2.00 -0.31 0.00 0.51 2.00 0.46

TABLE II
RELATIVE ERROR

Factor

Rate
λ2 = 0.5 λ2 = 2

γ = 0.1 1.51 % 0.71 %

γ = 0.3 1.82 % 0.89 %

γ = 0.5 1.55 % 0.84 %

γ = 1 1.48 % 0.82 %

v = 2. In our simulation, the system initializes with 0 taxis
and 0 passengers, and the simulation stops when 1000 taxis
have arrived at the system.

A. Decision Model

We measured the relative error of the computed Laplacian
transform using the following equation:

err =
|
∑n
i=1[T̃i(γ)− e−γTi ]|∑n

i=1 e
−γTi

where Ti is observed response time of the ith taxi joining the
queue, T̃i(γ) is the computed Laplacian transform of that taxi.
Table II shows the results we measured under the situation
where λ2 = 0.5 and λ2 = 2 with different γ. When the
arrival rate of passengers is low, the computation of Laplacian
transform depends more on π(M)

i , π(M,N)
0,0 and π(M,N)

1,i , which
are computed in a Monte Carlo approach, so the relative error
will be higher under that situation. Yet under both situations
when λ2 = 2 and λ2 = 0.5, the relative error is smaller than
0.02, which proves the correctness of our proposed way to
model the conditional mean response time.

We also measured the mean profit of taxis following the
decision process defined in (10), compared with random
decision process (i.e. with probability 0.5 to join the queue).
The price charged by the firm is fixed. As is illustrated in
Table I, our decision model would avoid joining a queue
with high price and low arrival rate of passengers, and our
model outperforms the random model in terms of mean profit.
This further confirms the correctness of our proposed decision
modelling.

Moreover, we compared the states of the system when the
price and arrival rate of passengers vary. As shown in Fig. 2,
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(a) p = 2, λ2 = 0.5
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(b) p = 2, λ2 = 2
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(c) p = 7, λ2 = 0.5

0 200 400 600 800 1000
Number of cars arriving at system

0

50

100

150

200

250

300

350

400

Sy
st

em
 st

at
e 

up
on

 a
rri

vi
ng

Taxis
Passengers

(d) p = 7, λ2 = 2

Fig. 2. Comparison between the states of the system when the price and the
arrival rate of passengers vary. Green lines indicate the number of taxis and
red lines indicate the number of passengers in the system. Data was collected
each time a new taxi arrived at the system.

when price is relatively low, it’s quite hard to form a large scale
congestion on passengers, taxis will slightly congest when the
arrival rate of passengers is low; when price is high, taxis will
avoid joining the queue when there’s some other cars waiting,
thus cause a congestion of passengers.

B. Pricing Strategy

We measured the performance of the pricing strategy im-
plied by Proposition 5, i.e. to charge a taxi driver with price
pM,N upon entering the system when pM,N > 0, and set p to
be high when pM,N ≤ 0. Fig. 3 illustrates the accumulate
profit when λ2 = 0.5 and λ2 = 2 with different pricing
strategy.

We can tell from Fig. 3 that our state-dependent pricing
strategy gives the best performance when the arrival rate of
passengers is large enough, but it’s suboptimal when the arrival
rate of passenger is small. One possible explanation is that
in the beginning, the profit rate obtained by state-dependent
pricing strategy when λ2 = 0.5 is no worse than fixed pricing
strategy, which is illustrated in Fig. 3, yet as time goes on,
the state-dependent pricing strategy will attract as many taxis
as possible to join a queue with very low price, thus cause a
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Fig. 3. Earning rate of the system with different pricing strategy. We can tell
that our state-dependent pricing strategy gives the best performance when the
arrival rate of passengers is large enough, but it’s suboptimal when the arrival
rate of passenger is small.

congestion with the number of taxis outweighing the number
of passengers, which turns other taxis away and causes the
firm to profit less than fixed pricing strategy. This confirms
the necessity of the two conditions required by Proposition 5.
Therefore, it is recommended that the firm adopts the state-
dependent pricing strategy when the arrival rate of passengers
is high, and adopts a fixed pricing strategy when the arrival
rate of passengers is low.

VI. CONCLUSION

In this work, we investigated the taxi-passenger matching
process in a double-ended queueing system, with non-zero
matching time. We proposed a method for computing the
Laplacian transform of conditional response time when the
distribution of matching time and inter-arrival time between
passengers is general, and characterize the value function of
the pricing strategy for the firm when the system is Markovian.
Experiment results show the correctness and effectiveness of
our proposed method. However, many topics are still left
unexplored, such as the close form for the expression of mean
response time in a double-ended queueing system, the effect
of batch size in the system and the decision modeling on the
passenger side. We wish future work would shed more light
to the truth of double-ended queueing system.
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